Abstract

A trisection is a decomposition of a 4-manifold into three 1-handlebodies. Kirby and Thompson introduced a non-negative integer-valued invariant of a closed 4- manifold by using trisections. This invariant is called the Kirby-Thompson invariant. In this talk, we give some lower bounds for the Kirby-Thompson invariant of certain 4-manifolds by using the 1st betti number and the 2nd homology group. As an application, we give a lower bound for the Kirby-Thompson invariant of Σg × Σh.

1. Einführung

Satz (Author)

Gilt , dann gilt eine Abschätzung der Kirby-Thompson-Invariante Was ist ?

Satz Ogawa

Gilt , dann ist eine Summe von

2. Review von Trisektionen

Siehe Trisektion (4D-Mannigfaltigkeit) und Trisektionsdiagramm.