Beschreibung

Der Hawaiische Ohrring ist eine Kurve, die den Anschein erweckt, nicht rektifizierbar zu sein, es aber trotzdem ist.

Definition

Die Kurve mit:

\frac{1}{2^n}\sin(n(n+1)2 \pi t){2^n}} & wenn\,t\in [\frac{1}{n+1}, \frac{1}{n}]\\ (0,0) &wenn\, t=0 <!--ID: 1687451613378--> \end{cases}$$ # Eigenschaften ## Rektifizierbarkeit Der Hawaiische Ohrring ist [[Rektifizierbarkeit|rektifizierbar]]. $\newcommand{\ges}[1]{\left\{ #1 \right\}}$ $\newcommand{\wink}[1]{\left\langle #1 \right\rangle}$ $\newcommand{\klam}[1]{\left( #1 \right)}$ $\newcommand{\R}{\mathbb R}$