Description
The Cauchy integral formula says that a holomorphic function defined on a disc is completely determined by its values the boundary of the disc.
Definition
Sei
- der Definitionsbereich von und Wertebereich von
- a Holomorphic function.
- eine Komplexe Stückweise Differenzierbare Schleife, die in nullhomotop ist.
Dann gilt für jedes : Note: The rotation number is necessary here because we didn’t ask for a simple closed curve.
Proof: Examine the function . By composition, this is a analytic function with a Hebbare Singularität at . Cauchy integral theorem tells us, that the integral around must be zero. Assuming is a simple closed curve, we follow: giving us the theorem.
Taking the derivative in of the above formula (the derivative is exchangable with integrals), we obtain the formula below.
Definition (Integralformel für Ableitungen)
Für jedes : Eine Nullhomologe Schleife ist nullhomotop, daher kann auch nullhomolog sein.