Description
We will be very interested in finding out whether a polynomial is reducible or Irreducible polynomial. To do this, the primitive form will be useful.
Definition
Sei ein faktorieller Ring und ein Polynom. Wir nennen das Polynom primitiv, wenn ist und die Koeffizienten keinen gemeinsamen Primteiler besitzen.
Properties
If you want to restrict possible rational roots, this is the tool. It doesn’t say anything on irrational roots however.
Conditions on possible rational roots
Let be a Unique factorization domain, its Quotient field and a polynomial of degree . Let .
- If is a root of and where coprime, then and .
- It follows that if , then lies in and is a divisor of .
Gauss's Lemma: Preserved under multiplication
If are primitive, then as well.