Train track splitting sequences on the twice punctured torus

Jean-Baptiste Bellynck

The slides can be found on https://jeanbellynck.github.io/

FrontierLab Final Presentation 2024.07.26

Disclaimer

Fluid mixing

Train Tracks

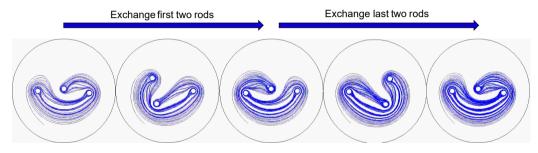
Agol (

For this presentation I will present the basics of my research using the more intuitive 3-punctured disc instead of the twice-punctured torus.



Fluid mixing

We add colouring into a round container with viscous fluid and repeatedly mix it using three rods as seen below.

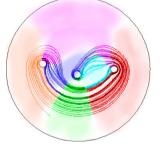


Map f (sends points to points)

Quickly an intricate structure, called *foliation*, consisting out of *leaves*, will appear.

Train Tracks

To study foliations and the maps that cause them, we bundle the leaves of a foliation into *branches*. The resulting graph-like object is called a *train track*.



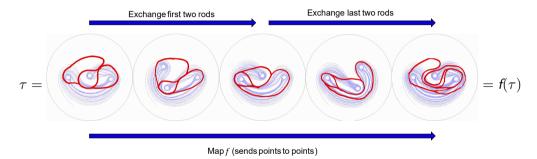
Partition of the foliation into differently coloured regions

Bundle the regions into one branch

The resulting train track

Train Track mixing

When mixing, the train track behaves similar to the foliation.



The last train track $f(\tau)$ looks like a denser version of the first train track τ !

Split

To create new train tracks we can split a branch into two branches and insert a third branch in the middle.

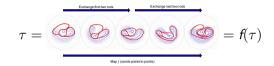
Figure: Left Split of a branch

Figure: Right split of a branch

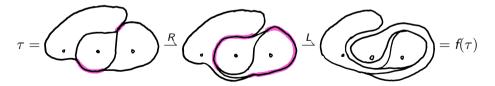
Depending on whether the middle branch goes to the right or to the left, the split is called a left or right split.

Disclaimer

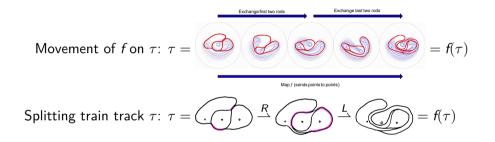
A magic trick



We start with the train track τ which we got from the foliation. I'll apply a special sequence of splits on the highlighted branches.



The last train track is exactly the train track $f(\tau)$ from before!



Theorem (Agol, 2011)

For a mixing map f, there exists a train track τ and a sequence of splits on τ that reproduces the movement of f on τ .

Disclaimer

Thank you for listening! Danke sehr! ありがとうございます!

Disclaimer

参考文献

- Agol, I. (2011). Ideal triangulations of pseudo-Anosov mapping tori. In *Topology and geometry* in dimension three. triangulations, invariants, and geometric structures. conference in honor of william jaco's 70th birthday, stillwater, ok, usa, june 4–6, 2010 (pp. 1–17). Providence, RI: American Mathematical Society (AMS). https://doi.org/10.1090/conm/560/11087
 Hodgson, C. D., Issa, A., & Segerman, H. (2016).Non-geometric veering triangulations. *Exp. Math.*, 25(1), 17–45. https://doi.org/10.1080/10586458.2015.1005256
- Penner, R. C., & Harer, J. L. (1992). *Combinatorics of train tracks* (Vol. 125). Princeton, NJ: Princeton University Press. https://doi.org/10.1515/9781400882458