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Periodic splitting sequences of the 
twice punctured torus

Jean-Baptiste Bellynck (under supervision of Eiko Kin)

Motivation

Background

Foliations

Maximal splitting Splitting Sequence

Many real-world phenomena can be modelled by surface maps, i.e. maps that move points on a two-dimensio-
nal surface. Typical examples are a three-rod stirring device, a dough-mixer or a taffy puller. Under the move-
ment of the rods, the particles are moved around. The movement of the particles can be described by a map and 
studied mathematically. For example, we can calculate whether a given map mixes well and calculate a number, 
describing the mixing efficiency. Especially so-called pseudo-Anosov maps are known to stir well and uniformly. 
I investigated some „mixing maps“ on the twice-punctured torus which are known to be pseudo-Anosov. I de-
scribe how those maps mix points on the surface and use train tracks to understand their properties.

We will study a torus with two points removed. In the following, we draw the torus as a rectangle. The rectangle can be obtained by 
cutting open the torus along two curves, as seen in figure 1. We can „mix“ points on the torus by applying right of left-handed Dehn 
twists. The right-handed Dehn Twist along a curve is illustrated in figure 2. It cuts the torus open along a curve and twists one end 
counter-clockwise by a 360° rotation. Figure 3 shows right-handed Dehn twists along the curves c1, c2 and a left-handed Dehn-twist 
along c3. We denote them by δ1, δ2, δ3

-1 respectively.

Fig. 1: The twice punctured torus cut open 

Fig. 2: Right-handed Dehn twist along the curve
Fig. 3: The Dehn twist on the rectangle

Intersecting curves turn right after applying a right-handed twist

We draw a curve on the torus (figure 4). Applying the map f  =  δ3
-1δ2δ1 repeatedly will stretch the curve over the torus. After a while, 

a foliation, consisting of leaves will appear. Applying f to the foliation will make the foliation denser but it won‘t change its slope. We 
partition the foliation into different segments. Then, we bundle leaves of the same colour into branches and assign the thickness of 
the segments as weights to the branches. The result is called a train track (figure 5). Every time two branches of the train track merge 
into one, the weights add up. Applying f to the train track can teach us how parts of the torus are folded under the mixing of f. (figure 6)

Using a split, we can modify a train 
track. For this, we split one branch 
into two. Then we connect the bran-
ches by a middle branch such that 
the weights of converging branches 
add up. Depending on the branch 
weights, this can be a left split or a 
right split. A maximal split splits all 
branches of a train track with the 
largest weight simultaneously. It is 
denoted by . Figure 8 shows a ma-
ximal split.

The repetition of maximal splits is 
called a track splitting sequence. 
When we repeat maximal splits on a 
train track, the train track gets more 
and more complicated. Agol sho-
wed 2011 that this sequence will 
eventually recreate the action of f 
(just as seen in the picture). This is 
useful, since it allows us to study f 
using maximal splits. However, it is 
still unknown how many maximal 
splits it takes to recreate the action 
or which train tracks lie inside the 
splitting sequence. In my research I 
explicitly calculated the cycle for a 
family of maps generalizing f.
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Fig. 4: Repeatedly applying the map f to a 
curve will make it into a foliation
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Fig. 5: Transforming the 
foliation into a train trackδ
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Fig. 6: We apply f to the train 
track
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Fig. 7: A left and right split of a branch
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