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main focus of this report. Some results will not be discussed. Instead they will appear in
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Introduction

Pseudo-Anosov maps are maps on a surface that appear chaotic, in the sense that a small
disc on the surface is stretched in one direction and contracted in the other by a factor
called dilatation, causing most nearby points to diverge rapidly as the map is iterated.
Nevertheless, pseudo-Anosov maps contain a lot of interesting structure because they set-
wise fix two transverse, measured geodesic laminations. [Thu88].

Train tracks were first introduced by Thurston (see [Thu79]). They are C1-embeddings
of graphs into a surface where the edges of a vertex all meet in a tangent line and also have
some additional properties. We can assign weights to each edge, which gives us a measured
train track. Up to shifting, folding and splitting operations, the measured train track
corresponds to a measured geodesic lamination on the surface. Therefore each pseudo-
Anosov map preserves an equivalence class of invariant train tracks which can be used
to study the transverse measured foliation and the pseudo-Anosov map combinatorially
[PH91].

For a given pseudo-Anosov map, Ian Agol studied the splitting sequences of these
invariant train tracks. The splitting sequence being an object resulting from the repeated
application of so-called maximal splittings at the edges with the largest weight. He noticed
that these sequences eventually lead to a cycle. Each time a cycle is realised, the train
track is changed by the pseudo-Anosov map and the weights are scaled by the inverse of
the dilatation [Ago11].

It is a relatively well-known result of Mosher [Mos03b] that projective train tracks on the
torus can be identified with continued fractions, with the maximal split acting as a kind of
continued fraction transformation map x 7→ 1/(x−⌊x⌋). This was further been investigated
and generalised to the 3-punctured disc by Aceves, Kin, Kawamuro [AK23, KK23]. In
a pretty recent article on the AMS [Mar23], Dan Margalit describes a conjecture, first
raised by Fried [Fri85], that all stretch factors are bi-Perron units, implying a deeper
connection between number theory and low-dimensional topology. However, Margalit also
mentioned that this connection is still not very clear. In light of this, we want to strengthen
the connection. We give some evidence for the fact that the connection between train
tracks of the torus and continued fractions can be generalized to other surfaces if Perrons’s
multidimensional continued fractions [Per07] are used.

The report is structured as follows. First, we give some background on the theory of
continued fractions, train tracks and splitting sequences. We then do a quick literature
review, to scout out some similar approaches and find good introductory material for the

https://www.ams.org/journals/notices/202305/noti2690/noti2690.html
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curious. Finally, we identify train tracks with continued fractions, first for a family of
pseudo-Anosov maps on the once-punctured torus and then on the twice-punctured torus.
We describe how the maximal split acts on the continued fraction and give a formula for
the dilatation, introduced by [Bau92]. If time allows, we will try to find a generalisation
for maps given by Penner’s construction.

This report is based on joint work with Eiko Kin.



Chapter 1

Background

We give some background necessary for the theory explained later on. The document
was intended to require only knowledge of topology but due to time constraints, some
important details will be omitted and referred to the literature instead. To be precise, we
won’t go into the details of Perron-Frobenius theory, the reader is advised to read [Kit12]
or one of the many other books in the subject instead. We won’t go into laminations and
pseudo-Anosov maps but good explanations can be found in [Thi22, Iss12, Mar18].

1.1 Continued fractions

We give a brief introduction to continued fractions, their properties and provide a pictorial
characterisation in the form of a rectangle. (An explanation can be found in [Kno], an
earlier description can be found in [Kim83].

The introduction to continued fractions will follow [HW08] as it is considered a classic
in the field. I will also borrow some aspects from [Bau92].

Definition 1.1.1 (Continued fraction). Let w ∈ Q+ be a positive, rational number. We
say, w has the (unitary) continued fraction expansion [a1, ..., al] if

w = a1 +
1

a1 +
1

...+ 1
al

with a ∈ N0

For this definition of the continued fraction we allow 0 as a coefficient. This means that
a number can have multiple continued fraction expansions, such as [a, 0, b] = [a+ b] but it
will be more natural to generalise later on.

Definition 1.1.2 (Infinite continued fraction). Let w ∈ R+ be a positive, real number.
We say, w has the (unitary) infinite continued fraction expansion [a1, a2, ...] if

w = lim
t→∞

[a1, ..., at]
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If the continued fraction expansion eventually repeats, we write

w = [a1, ..., an, b1, ..., bm] = [a1, ..., an, b1, ..., bm, b1, ..., bm, ...]

Continued fractions can be characterized using matrices. We first define equality up to
rescaling.

Definition 1.1.3 (Slope). The slope of a vector v =

( v1
...
vn

)
∈ Rn

+ is s :=

(
v2/v1
...

vn/v1

)
Definition 1.1.4 (Projective equivalence). For two vectors v, w ∈ Rn

+, we define the
projective equality

v
p
= w ⇐⇒ v = cw

for a c ∈ R>0. Also, for a sequence of vectors vi ∈ Rn
+, we write

lim
t→∞

vi
p
= v

if we can find a sequence of ci ∈ R+ s.t. limt→∞ civi = v.

Definition 1.1.5 (Projective equivalence class). Let v =

( v1
...
vn

)
∈ Rn

>0 be a vector with

slope s =

(
v2/v1
...

vn v1

)
. Then the equivalence class of the projective equality is denoted with

its slope, written in square brackets [s]p.

[s]p :=




1
v2/v1
...

vn/v1




p
=

=



v1
v2
...
vn




p
=

The space of equivalence classes is equal to Rn−1
+

Geometrically, the projective equivalence classes are positive rays, emanating from the
origin. Two vectors are projectively equivalent if and only if they have the same slope. We
can say that a vector v has the slope s by writing v ∈ [s]p. In the next step, we take the
previous characterisation as our definition of continued fractions.

Theorem 1.1.6 (Lemma 1 in [Bau92]). Let s = [a1, a2, ...]. Then the following holds:

lim
t→∞

D[a1]...D[at]

(
0
1

)
p
=

(
1
s

)
∈
[
s
]
p

where D[a] =

(
0 1
1 a

)
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Figure 1.1: A golden ratio party trick Figure 1.2: Continued fraction visualized
as a rectangle

It is a well-known party trick that for a rectangle with the side ratio of the golden ratio
φ = [1] = 1+

√
5

2
, you can cut out a square and get a smaller rectangle with the side ratio

being, once again, the golden ratio. This follows from the fact that φ
1
= 1

φ−1
. The process

of cutting off squares can be repeated indefinitely many times, giving us the figure 1.1.

This trick does not only apply to φ = [1], but also extends to other continued fractions
w = [a1, a2, ...]. If we draw a rectangle with side ratio w, we can cut off at most a1 squares
from the left. From the resulting rectangle we can then cut off a2 squares from the bottom.
Then we can cut off a3 squares from the left again, and so on. Furthermore, the sequence
of how many square we cut off determines the side ratio of the rectangle.

Definition 1.1.7. rect( v1
v2 ) denotes a rectangle of width v1 and height v2. We say, a

rectangle admits a square partition [a1, a2, a3, ...] if it can be partitioned into squares, as
seen in figure 1.2.

Theorem 1.1.8 ([Kno]). For v = ( v1
v2 ), a rectangle rect(v) admits a square partition

[a1, a2, a3, ...] if and only if it v has slope s = [a1, a2, a3, ...].
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1.2 n-ary continued fractions

We review the definition of the n-ary continued fraction as described in [Bau92]. We first
describe the normal continued fraction and then we introduce a characterisation taken from
linear algebra.

Definition 1.2.1 (n-ary continued fraction). We generalise the arguments of the continued
fraction definition as follows:

ai ∈ N0 =⇒ y(i) ∈ Nn
0

D(ai) ∈ M2(N0) =⇒ Dn(y
(i)) ∈ Mn+1(N0)

s = [a1, ..., at] ∈ Q =⇒ w = [y(i), ..., y(t)] ∈ Qn

A vector s =

( w1

...
wn

)
∈ Qn

+ has the (finite) n-ary continued fraction expansion [y(1), ..., y(t)]

if

[s]p =

[
Dn[y

(1)]...Dn[y
(t)]

(
0
...
0
1

)]
p
=

where Dn[y
(i)] =

(
0 1
In yi

)
=


0 0 ... 0 1

1 0 ... 0 y
(i)
1

0 1 ... 0 y
(i)
2

...
...
...

...
...

0 0 ... 1 y
(i)
n


A vector s =

( w1

...
wn

)
∈ Rn

+ has the (infinite) n-ary continued fraction expansion [y(1), y(2), ...]

if

[s]p = lim
t→∞

[
Dn[y

(1)]...Dn[y
(t)]

(
0
...
0
1

)]
p
=

Once again, we write:

[y(1), ..., y(n), z(1), ..., z(m)] := [y(1), ..., y(n), z(1), ..., z(m), z(1), ..., z(m), ...]

Note the use of language here. Instead of defining the value of an n-ary continued frac-
tion, we have described when a vector w ∈ Rn

+ has an n-ary continued fraction expansion.
This was done because, unlike to the unitary case, the infinite n-ary continued fraction
[y(1), ...] for vectors y(i) ∈ N0 does not always converge to a well-defined value. In our case,
this won’t be an issue.

Next, we want to invert the above formulas to get a condition for when w has a continued
fraction expansion. For the finite case this is straightforward but the infinite case requires
some extra work.

Proposition 1.2.2. s ∈ Qn
+ has the finite n-ary continued fraction expansion if and only

if

Dn[y
(t)]−1...Dn[y

(1)]−1

(
1
s

)
p
=

(
0
...
0
1

)
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s ∈ Rn
+ has the infinite n-ary continued fraction expansion if and only if

lim
t→∞

Dn[y
(t)]−1...Dn[y

(1)]−1

(
1
s

)
= 0

Proof.

[s]p =

[
Dn[y

(1)]...Dn[y
(t)]

(
0
...
0
1

)]
p
=

⇐⇒
(
1
s

)
p
= Dn[y

(1)]...Dn[y
(t)]

(
0
...
0
1

)

therefore the finite case results from inverting the matrices Dn[y
(i)].

The infinite case is trickier. [s]p = limt→∞

[
Dn[y

(1)]...Dn[y
(t)]

(
0
...
0
1

)]
p
=

means, there is a

sequence (ct)t∈N, ct ∈ R+ converging to zero such that(
1
s

)
= lim

t→∞
ctDn[y

(1)]...Dn[y
(t)]

(
0
...
0
1

)
= lim

t→∞
Dn[y

(1)]...Dn[y
(t)]

(
0
...
0
ct

)
From this we get

lim
t→∞

Dn[y
(t)]−1...Dn[y

(1)]−1

(
1
s

)
= lim

t→∞

(
0
...
0
ct

)
= 0

We continue by describing the eigenvalues of products of Dn[y
i]-matrices explicitly:

Theorem 1.2.3 (Theorem 6 in [Bau92]). For y(1), ..., y(p) ∈ Nn
0 let M = Dn[y

(i)]...Dn[y
(p)] ∈

Mn+1(Z) be a matrix as seen in the definition of the n-ary continued fraction. Suppose that
M is Perron-Frobenius. Then the Perron-Frobenius eigenspace of M is:

[
s
]
p
=

s1...
sn


p

where s = [y(1), ..., y(p)]. Its eigenvalue can be explicitly described as:

λ =

p∏
v=1

(T v−1[y(1), ..., y(p)])|n

where T is a shift operator T [y(1), y(2), y(3), ...] = [y(2), y(3), ...] on the continued fraction and
|n is the projection to the n-th coefficient.

Observe that the shift operator T is not well defined as a function of T : Rn
+ → Rn

+

but only as an operator on the continued fraction expansion, since s ∈ Rn
+ can have many

different continued fraction expansions.
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1.3 Train tracks

A train track is a special kind of graph, embedded into a surface. It was introduced by
Thurston [Thu79] and named by him and his students. Its name implies a structure, similar
to a real railway track, which can be smoothly traversed by a train. Mathematically this
”train traversal” will be realised by a differentiable curve α running on the train track at
a non-vero speed.

The definitions in this chapter generally follow Issa’s master thesis [Iss12]. This report
will only be interested in trivalent train tracks as they are easier to work with. Since a
non-trivalent train track is, in a sense, equivalent to a trivalent train track, it makes no
difference later on. I will also only consider surfaces S with Euler characteristic χ(S) < 0,
since some definitions have a habit of breaking on the flat torus.

Remark 1.3.1. For the rest of the paper, S = Sg,p will denote a surface of genus g ≥ 0 with
p ≥ 0 punctures of Euler characteristic χ(S) < 0. All maps S → S will be orientation-
preserving homeomorphisms. Furthermore, when we speak of a homeomorphism f , we
will be ambiguous as to whether we mean the mapping class of f or the homeomorphism
f . Since we are interested in topological properties up to isotopy, this doesn’t cause any
problems but caution is advised.

Definition 1.3.2 (Train track). A train track on a surface S is a connected graph τ ⊆ S,
embedded in S. We call the vertices switches and the edges branches. The train track is
trivalent, i.e. each switch has three branches attached to it. We also need the the following
properties [Iss12, PH91]:

(i) Branch shape: The interior of each branch b is c1, meaning, there is a continuously
differentiable curve α : [0, 1] → S parametrising b

(ii) Switch shape: If s is a switch then it looks line in figure 1.3, i.e. there is a tangent
line Ts(τ) sitting in the tangent space Ts(S) at v. Additionally, we require at least
one edge at each end of the tangent line. Meaning, if α[0, 1] is a curve parametrising
the switch s and two connected branches with α(1

2
) = s then dα

dt
(1
2
) ∈ Ts(τ)

(iii) Geometrical condition: We require the train track to be ”essential”. This means,
no connected component of S − τ is an embedded disc, annulus, monogon or bigon.

The set of all branches is denoted E(τ), the set of switches is denoted V (τ)

A train track τ ⊆ S is ”essential” if all differentiable embeddings c : S1 → τ of a closed
curve into the train track are essential closed curves. [FM11] defines essential closed curves
as follows:

Definition 1.3.3 (Essential closed curve). Let S be a surface. An essential closed curve
is a closed curve on S which is not homotopic to a point, a puncture or a boundary
component.
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A Dehn-Twist around a non-essential simple closed is homotopic to the identity and
therefore not very interesting for the study of mapping class groups. This is why we will
require our closed curves to be essential.

Definition 1.3.4 (Measured train track). A measured train track is a train track on a
surface S with a measure µ : E(τ) → R>0, assigning positive weights to the edges of the
train track, such that the switch condition (see figure 1.4) holds.

Figure 1.3: Train track switch Figure 1.4: Switch condition

Often we will be interested in measured train tracks up to rescaling. We reuse the
previous notation [·]p to describe projective train tracks.

Definition 1.3.5 (Projective train track). Let S be a surface. Two measures µ, µ′ of a

train tracks τ ⊆ S are considered to be projectively equivalent µ
p
= µ′ if their measures

differ by a positive factor, i.e. µ′ = cµ for a c ∈ R+.
The equivalence class of a measured train track (τ, µ) up to rescaling of the measure is
called a projective train track and denoted (τ, [µ]p) := [(τ, µ)] p

=

Definition 1.3.6 (Pushforward). Let (τ, µ) a measured train tracks and f : S → S be a
homeomorphism. We define the pushforward of µ with respect to f as

f∗(µ)(b) := µ(f−1(b))

for a branch b ∈ E(f(τ)). Furthermore, we write

f(τ, µ)(b) := (f(τ), µ(f−1(b)))

This descends to a pushforward for projective train tracks.

We define equality and combinatorial equivalence to projective train tracks. This is
inspired by [Mos03b].

Definition 1.3.7 (Equality for train tracks). Let τ, τ ′ ⊆ S be two train tracks and µ, µ′

measures on the two train tracks respectively.
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• The train tracks τ, τ ′ are called equal (or isotopic) if f(τ) = τ ′.

• The measured train tracks (τ, µ), (τ ′, µ′) are called equal (or isotopic) if f(τ, µ) =
(τ ′, µ′).

• The projective train tracks (τ, [µ]p), (τ
′, [µ′]p) are called equal (or isotopic) if f(τ, µ) ∈

(τ ′, [µ′]p)

for a homeomorphism f , isotopic to the identity. The equality is denoted symbolically by
=.

Definition 1.3.8 (Combinatorial equivalence for train tracks). Let τ, τ ′ ⊆ S be two train
tracks and µ, µ′ measures on the two train tracks respectively.

• The train tracks τ, τ ′ are called combinatorially equivalent with respect to f if f(τ) =
τ ′.

• The measured train tracks (τ, µ), (τ ′, µ′) are called combinatorially equivalent with
respect to f if f(τ, µ) = (τ ′, µ′).

• The projective train tracks (τ, [µ]p), (τ
′, [µ′]p) are called combinatorially equivalent

with respect to f if f(τ, µ) ∈ (τ ′, [µ′]p)

for an orientation-preserving homeomorphism f . The combinatorial equivalence is denoted
symbolically by ∼=.

The next definition is from [HIS16].

Definition 1.3.9 (Suited train track). Let S be a surface. Let (L, λ) be a measured
geodesic lamination on S and let (τ, µ) be a measured train track on S. The measured
train track (τ, µ) is suited to (L, λ) if the following conditions are satisfied

• There exists a differentiable, non-homeomorphism ϕ : S → S homotopic to the
identity such that f(L) = τ

• If α : [0, 1] → τ ′ is a curve with everywhere non-zero velocity parametrizing a finite
subset of a leaf of L then ϕ ◦ α : [0, 1] → τ too has everywhere non-zero velocity.

• ϕ respects the transverse measures, that is if p is a point in the interior of an edge
b ∈ E(τ) then λ(ϕ−1(p)) = µ(e)

Definition 1.3.10 (Carrying train tracks). Let τ, τ ′ ⊆ S be train tracks. τ carries τ ′ if
there exists a carrying map collapsing τ ′ onto τ , that is, a C1-map ϕ homotopic to the
identity, satisfying:

(i) ϕ(τ ′) ⊂ τ

(ii) If s ∈ V (τ ′) is a switch of τ ′, then ϕ(s) is a switch of τ
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(iii) If α : [0, 1] → τ ′ is a curve with everywhere non-zero velocity then ϕ ◦ α : [0, 1] → τ
too has everywhere non-zero velocity.

Definition 1.3.11 (Invariant train tracks). Let f : S → S be a homeomorphism of a
surface S. A train track τ ⊆ S is invariant with respect to f if τ carries f(τ).

Let τ be invariant with respect to f . Looking at one branch b ∈ V (τ) and applying f
and then the carrying map ϕ, the two switches of b are mapped to switches of τ . Similarly,
the branch b is mapped to a branch path (i.e. a sequence of branches). This leads us to
define the incidence matrix, a matrix which describes how edges are mapped back into τ .

Definition 1.3.12 (Incidence matrix). Let τ ⊂ S be a train track invariant with respect
to a homeomorphism f : S → S and a carrying map ϕ. For τ , we choose a numbering and
orientation for the edges e1, ..., en : [0, 1] → τ .
The incidence matrix (sometimes transition matrix ) is the matrix M = M(τ, f) where
Mi,j is the number of times the curve ϕ ◦ f(ej) crosses ei as it is traversed, that is,

Mi,j = |ej ∪ (ϕ ◦ f)−1(ei)| 1 ≤ 1, j ≤ k

where |A| indicates the number of connected components of A (edges do not include their
endpoints)

The following theorem demonstrates the usefulness of the incidence matrix. If we
have a train track that is invariant under f and an incidence matrix that satisfies certain
conditions, then it is sufficient to conclude that f is pseudo-Anosov.

Theorem 1.3.13 (Theorem 3.4 of [Los93]). Let f : S → S be a homeomorphisms of a
surface S such that there exists an invariant train track τ ⊆ S satisfying the following
conditions:

(i) The train track τ is connected and fills the surface S, that is, each connected compo-
nent of S − τ is topologicall homeomorphic to a disc or an annulus.

(ii) The indidence matrix M with respect to the edges e1, ..., ek of τ has a real eigenvalue
λ > 1 with and maximal modulus among all eigenvalues.

(iii) The eigenvalue has multiplicity 1 and its eigenspace is spanned by an eigenvector with
strictly positive entries

(iv) Assigning the weights v1, ..., vk to the branches b1, ..., bk respectively, turns τ into an
invariant measured train track.

then f is isotopic to a pseudo-Anosov homeomorphism with dilatation λ.

The proof of the theorem relies heavily on the Bestvina-Handel algorithm [BH95]. This
algorithm takes a homeomorphism f as input and computes a train track that is invariant
under f . Along the way, the algorithm determines whether f is pseudo-Anosov or not.
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Theorem 1.3.14. If a train track τ is invariant under g and f with incidence matrices
Mg,Mf , it is invariant under g ◦ f as well. The incidence matrix is given by the product
of the incidence matrices Mgf = MgMf .

Proof. Among experts this theorem is relatively well known. Instead of giving a detailed
proof, we will quickly make use of fibered neighbourhood. (See [Iss12] for more details)
We will consider a small neighbourhood N(τ) of the train track τ . We will make the
neighbourhood a fibered surface as shown in figure 1.5, so that the fibers are transverse to
the train track.

Figure 1.5: Fibered neighbourhood of a train track at switches and branches

The train track τ is invariant under f . W.l.o.g. we deform f so that f(τ) ⊆ N(τ). We
can also deform f such that f(N(τ)) ⊆ N(τ), while also mapping fibers onto fibers. The
same can be done for g.
This makes gf becomes fiber-preserving and the map satisfies gf(N(τ)) ⊆ N(τ). By
contracting the individual fibers to a point, we can easily construct a carrying map for
gf . Since the train tracks remain transverse to the fibers under gf , the carrying map is
well-defined and τ becomes invariant under gf . In particular, there are no ”back-tracks”
in the carrying map.

Let E(τ) = {b1, ..., bn}. Describing a multi-set of branches using a vector x =

x1
...
xn

, Mfx

describes to which branches x is sent to under f . MgMfx then describes to which branches
x is sent to under g ◦ f , proving the last claim.

1.4 Penner’s construction

In his 1988 paper Penner described a way to construct an entire semigroup of pseudo-
Anosov map on a (possibly non-orientable) surface [Pen88]. We will quickly outline the
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construction for oriented surfaces here.

Definition 1.4.1 (Curves hitting efficiently). Let c, d be two closed curves on an orientable
surface S. We say, c hits d efficiently if S − (c ∪ d) has no bigon component.

Definition 1.4.2 (Penner’s construction). Let S be an oriented surface with negative
Euler characteristic χ(S) ≤ 0. Let C = {c1, ..., cn} be a finite collection of disjoint, essential
simple closed curves on S. Let D = {d1, ..., dm} be a collection of curves with the same
properties. Suppose, C ∪ D fill S, are not pairwise parallel and the curves in C and D hit
each other efficiently.
Let fLi

denote the right-handed Dehn-twist around the curve ci and fRj
the left-handed

Dehn-twist around the curve dj. The semi-group generated by the Dehn-Twists is called
Penner’s construction:

F (fR1 , ..., fRn , fL1 , ..., fLm) := ⟨fR1 , ..., fRn , fL1 , ..., fLm⟩

Furthermore, we define the train track τC,D by smoothing the edges as shown in figure 1.6.
The collection of branches obtained from ci (resp. dj) by smoothing is denoted Ci (resp.
Dj).

Figure 1.6: Smoothing crossings between curves ci and dj

We mention a side effect of the above definition. The large branch, obtained by smooth-
ing the crossing between ci and dj, will be contained in both Ci and Dj. We will be able
to adjust for this later. For the sake of simplicity, we will refer to Ci and Dj as curves.

We continue by analysing how Dehn-twists act on Ci and Dj.

Lemma 1.4.3. Let C = {c1, ..., cn},D = {d1, ..., dm} be collection of curves as in Penner’s
construction. Then the train track τ = τC,D is invariant under the Dehn-twists fRi

, fLj
.

Ordering the curves as follows: (C1, ..., Cn, D1, ..., Dm) the map fLi
and fRj

respectively
induce the incidence matrix:

Li =

(
In A
0 Im

)
and Rj =

(
In 0
B Im

)
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Figure 1.7: Example curves for Penner’s construction

where

A =



0 ... 0
...

...
0 ... 0

#(ci ∩ dj1) ... #(ci ∩ djm)
0 ... 0
...

...
0 ... 0


and B =

0 ... 0 #(ci1 ∩ dj) 0 ... 0
...

...
...

...
...

0 ... 0 #(cin ∩ dj) 0 ... 0



With #(c ∩ d) giving the count of intersections between the curves c and d

Proof. We study the effect of a right-handed Dehn-twist. fRi
only affects the neighbour-

hood S(ci) of the curve ci and is the identity outside.
After smoothing the curve S(ci) locally looks like the left part of figure 1.8, with fRi

changing it into the right part. We can easily construct a carrying map to show that τ is
invariant. The matrices follow from the figure.

Figure 1.8: Right-handed Dehn-twist around ci

The proof for fLj
is analogous.

There is a very important remark to be made. Since Ci, Dj are not branches but a
collection of branches, the above is not really an incidence matrix in the sense defined
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previously. Nevertheless, the resulting matrix has very similar properties to the incidence
matrix. In particular, f is pseudo-Anosov when the incidence matrix is Perron-Frobenius.
We won’t go into the details here. A similar treatment can be found in [Pen91].

Lemma 1.4.4. Let C = {c1, ..., cn},D = {d1, ..., dm} be collection of curves as in Pen-
ner’s construction. Then a map f−1

Lin
fRin

...f−1
Li1

fRi1
∈ F (fR1 , ..., fRn , fL1 , ..., fLm) has the

incidence matrix:

M = LinRjn ...Li1Rj1

Proof. It is known from Lemma 1.4.3 that τC,D is invariant under the Dehn-twists fLi
, fRj

with the incidence matrices being Li, Rj. By Theorem 1.3.14, τ also becomes invariant
under f . Its incidence matrix is M = LinRjn ...Li1Rj1 .

Theorem 1.4.5 (Theorem 3.1 in [Pen88]). Let C = {c1, ..., cn},D = {d1, ..., dm} be collec-
tion of curves as in Penner’s construction. Then the map

f−1
Lin

fRin
...f−1

Li1
fRi1

∈ F (fR1 , ..., fRn , fL1 , ..., fLm)

written as a word in the generators, is pseudo-Anosov if every generator appears at least
once.

We will investigate example constructions in section 3

1.5 Agol cycles

We give a background on Agol cycles. This section will follow work by Ahmad Issa [Iss12].

Definition 1.5.1 (Small and large branches). Let τ be a train track on a surface. A
branch b ∈ E(τ) is called small if it looks like the figure 1.9 and large if it looks like the
figure 1.10. Let µ : E(τ)øR+ be a measure on the branches of τ . A branch b ∈ E(τ) is
called maximal if it is large and has the largest weight of all branches.

Definition 1.5.2 (Split). Let (τ, µ) be a measured train track on a surface S. Let b ∈ E(τ)
be a large branch. A split separates the branch into two branches and, if necessary, connects
them with a equalising branch, thus preserving the switch condition.
This produces a new measured train track (τ ′, µ′). The split of the train track at the
branch (τ, µ) is denoted as:

(τ, µ) ⇀b (τ
′, µ′)

If the equalising branch is left-facing, we call the split a left split and write
L
⇀b. If the

branch is right-facing, we call the split a right split and write
R
⇀b. Theoretically, there

may be cases where there is no need to insert an equalising branch. But this case won’t
be relevant to our report, so we’ll ignore it.
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Figure 1.9: Small Branches Figure 1.10: Large Branch

For two measured train tracks (τ, µ), (τ ′, µ′), we say that (τ, µ) splits into (τ ′, µ′) if there
is a sequence of branches and splits connecting the two train tracks.

(τ, µ) ⇀b1 ... ⇀bn (τ ′, µ′)

Figure 1.11: Left and right split of a branch with example weights

Notice, that the left split
L
⇀b and the right split

R
⇀b preserve the number of branches

whereas
N
⇀b reduces the number. Since we want to keep the number of branches the same,

N
⇀b will not be important in this paper and we will make sure that it never occurs.

Definition 1.5.3 (Maximal Split). Let (τ, µ) be a measured train track on a surface S.
A maximal split splits all branches with the highest weights, producing a new measured
train track (τ, µ). A maximal split is denoted as

(τ, µ) ⇀ (τ ′, µ′)
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Sometimes we are interested in whether the splits are left or right splits. If all splits are in

a maximal split are left splits, we write
L
⇀. If all splits are right, then we write

R
⇀. If both

occur, we write
LR
⇀. In some cases, it is more convenient to write the maximal split as an

operator on the measured train track ⇀ (τ, µ) = (τ ′, µ′). Note that during concatenation,
the order of the split symbols will be reversed!
A sequence of maximal splits

(τ0, µ0) ⇀ (τ1, µ1) ⇀ ... ⇀ (τn, µn)

will be shortened as (τ0, µ0) ⇀
n (τn, µn). We also write (τ0, µ0) ⇀

∗ (τn, µn) if the n is not
of importance.

Definition 1.5.4 (Splitting sequence). Let (τ0, µ0) be a measured train track. The infinite
sequence of maximal splits

(τ0, µ0) ⇀ (τ1, µ1) ⇀ ...

is called the splitting sequence of (τ0, µ0).

We define the periodic splitting sequence. This is a splitting sequence that is periodic
modulo the action of a homeomorphisms and the rescaling of the measured train track by
a factor. Note, that this definition is more general than the definition given in [HIS16].
There, a splitting sequence is called periodic if and only if it results from the theorem
1.5.12.

Definition 1.5.5 (Periodic splitting sequence). Let (τ0, µ0) be a measured train track and

(τ0, µ0) ⇀ (τ1, µ1) ⇀ ...

its splitting sequence. If there is a n ∈ N such that (τi, [µi]p) and (τi+n, [µi+n]p) are
combinatorically equivalent with respect to a homeomorphism f : S → S for all i ∈ N,
then the splitting sequence is called periodic with respect to f with period n. If n is also
minimal, it is called the minimal period of the splitting sequence.

Lemma 1.5.6 ([KK23]). Let (τ, µ) be a measured train track in S. Let ϕ : S → S be en
orientation-preserving homeomorphisms. Then the split and homeomorphism commute.

(ϕ◦ l
⇀)(τ, µ) = (

l
⇀ ◦ϕ)(τ, µ)

The same statement holds for
r
⇀ and

lr
⇀

Lemma 1.5.7. Let (τ0, µ0) be a measured train track and (τ0, µ0) ⇀ (τ1, µ1) ⇀ ... its
splittings sequence. If there is a n ∈ N such that (τ0, [µ0]p) ∼= (τn, [µn]p) with respect to a
homeomorphism f : S → S, then the splitting sequence is periodic with respect to f and
period n.
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Proof. We will show (τi, [µi]p) ∼= (τi+n, [µi+n]p) for all i ∈ N by induction. The base case is
already given. We show (τi+1, [µi+1]p) ∼= (τi+1+n, [µi+1+n]p):

(τi+1+n, [µi+1+n]p) =⇀ (τi+n, [µi+n]p) = (⇀ ◦f)(τi, [µi]p) = (f◦ ⇀)(τi, [µi]p) = f(τi+1, [µi+1]p)

by lemma 1.5.6, proving that the splitting sequence of (τ0, µ0) is periodic with respect to
f .

Lemma 1.5.8. Let (τ0, µ0) be a measured train track and S its splittings sequence (τ0, µ0) ⇀
(τ1, µ1) ⇀ .... Assume S is periodic with respect to a homeomorphism f with period.
If there are two measured train tracks (τm1 , µm1), (τm2 , µm2) (with m2 > m1) such that
(τm1 , [µm1 ]p)

∼= (τm2 , [µm2 ]p) with respect to a homeomorphism g, where gf = fg then S is
periodic with respect to g and period m := m2 −m1.

Proof. W.l.o.g. we assume n > m2, otherwise we choose sufficient a power of f as period
of S. The subsequence of S, beginning at (τm1 , µm1) is periodic with respect to g, thereby
we have ⇀m (τn, [µn]p) = g(τn, [µn]p). From this, we then get:

⇀m (τ0, [µ0]p) = (⇀m+n ◦f−1)(τ0, [µ0]p) = (f−1◦ ⇀m+n)(τ0, [µ0]p)

= (f−1◦ ⇀m)(τn, [µn]p) = (f−1 ◦ g)(τn, [µn]p)

= (f−1 ◦ g ◦ f)(τ0, [µo]p) = g(τ0, [µo]p)

The assumption fg = gf seems out of place but it is actually very natural for splitting
sequences. If the splitting sequence of (τ0, µ0) is periodic with respect to f with period
n and periodic with respect to g with period m then we have (g ◦ f)(τ0, [µ0]p) =⇀m+n

(τ0, [µ0]p) = (f ◦ g)(τ0, [µ0]p), proving that the action of the two maps is commutative. If
the train track (τ0, µ0) fills the surface, then the commutative action on the train track
leads to a commutativity of the mapping classes. This means that if our train track has
nice properties then the commutativity does not need to be a requirement for the above
lemma.

Lemma 1.5.9. Let (τ0, µ0) be a measured train track and S its splittings sequence. Let
f1, f2 : S → S be homeomorphisms with f1f2 = f2f1. If S is periodic with respect to f1 with
period n1 ∈ N and periodic with respect to f2 with period n2 then S is periodic with respect
to a homeomorphism g with period m = gcd(n1, n2) such that gn1/m = f1 and gn2/m = f2.

Proof. We give some background. Euclid’s algorithm can compute the greatest common
divisor of two numbers n1, n2 in a finite amount of steps by repeatedly subtracting the
smaller number from the larger. We will use it here to find m and g.
W.l.o.g. we assume n1 < n2. By lemma 1.5.8, the equation

⇀n2−n1 (τn1 , [µn−1]p) = (⇀n2−n1 ◦ ⇀n−1 ◦f−1
1 )(τn1 , [µn−1]p) = (g ◦ f−1

1 )(τn1 , [µn−1]p)
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shows that S is periodic with respect to f2f
−1
1 with period n2 − n1. This new map is

commutative with both f1 and f2 as

f2f
−1
1 ◦ f1 = f2f1f

−1
1 = f1 ◦ f2f−1

1 and f2f
−1
1 ◦ f2 = f2f2f

−1
1 = f2 ◦ f2f−1

1

By induction on the step count, it can be shown that Euclid’s algorithm returns a m =
gcd(n1, n2) and a homeomorphism g such that S is periodic with respect to g and with
period m. Furthermore, gn1/m = f1 and gn2/m = f2.

Agol showed that the splitting sequences of a two measured train tracks suited to the
same stable lamination of a pseudo-Anosov map f have a peculiar property. After enough
maximal splits they will both become the same measured train track (up to rescaling of
the measure and isotopy)

Theorem 1.5.10 ([Ago11], Corollary 3.4). Let (Ls, µs) be a measured lamination suited
to the measured train tracks (τ1, µ1), (τ2, µ2). Then there is a train track (τ, µ) such that
(τ1, µ1) ⇀

∗ (τ, µ) and (τ2, µ2) ⇀
∗ (τ, µ).

This implies that the splitting sequence of equivalent measured train tracks will even-
tually have the same tail. We formalise the idea of having ”the same tail” by combinatoric
isomorphism. If the measured train track is suited to the lamination of a map f , then its
tail will even be periodic.

Definition 1.5.11. Let S be a surface. Let (τ, µ), (τ, µ) be two measured train tracks with
splitting sequences

(τ0, µ0) ⇀ (τ1, µ1) ⇀ ... and (τ ′0, µ
′
0) ⇀ (τ ′1, µ

′
1) ⇀ ...

respectively. We denote the splitting sequences by S,S ′ respectively. We say that S and
S ′ are combinatorically isomorphic if there are t, s ∈ N0 such that:

(τt, [µt]p) ∼= (τ ′s, [µ
′
s]p)

for all i ∈ N0

The above definition has been taken from [HIS16] but has a few important distinctions,
but has been adapted to non-periodic splitting sequences.

Theorem 1.5.12 ([Ago11]). Let f : S → S be a pseudo-Anosov map with dilatation λ and
unstable measured lamination (Fu, µu). If (Fu, µu) is suited to the measured train track
(τ, µ) then the splitting sequence of (τ, µ) is eventually periodic. More precisely, there exist
n,m ∈ N0 such that

(τ, µ) ⇀n (τn, µn) ⇀
m f(τn, λ

−1µn)
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Definition 1.5.13. Let f : S → S be a pseudo-Anosov map with dilatation λ and unstable
measured lamination (Fu, µu), suited to a measured train track (τ0, µ0).
Assume, the splitting sequence of (τ0, µ0) is periodic with n ∈ N such that (τ0, µ0) ⇀n

f(τ0, λ
−1µ0). The finite subsequence

(τ0, µ0) ⇀ ... ⇀ f(τ0, λ
−1µ0)

is called an Agol cycle with respect to f .

• l(f) := m is called the length of the Agol cycle.

• N(f) :=
∑m

i=1#(Number of maximal branches in (τn+i, µn+i)) is called the total split-
ting number.

A map f usually has many related Agol cycles, so it is not clear whether the length or
the total splitting number is well-defined or not. Furtunately, [Ago11] showed that any two
measured train tracks which are suited to the stable lamination of f have combinatorically
isomorphic splitting sequences. Their periodic parts differ only by a homeomorphism and
a scaling factor, i.e. the Agol cycle length and the total splitting number are equal.

We also note the following. Let f and hfh−1 be a homeomorphism and a conjugate
respectively. If (τ, µ) is a measured train track suited to the stable lamination of f , then
h(τ, µ) is a measured train track suited to the stable lamination of hfh−1. From this
follows that f and hfh−1 have combinatorically isomorphic splitting sequences and their
Agol cycles will differ by a homeomorphism, a factor and a shift.

Definition 1.5.14 ([HIS16], Definition 5.1). Let S be a surface. Let f, f ′ : S → S be
pseudo-Anosov homeomorphisms with Agol cycles

(τ0, µ0) ⇀
m (τm, µm) = f(τ0, λ

−1µ0)

(τ0, µ0) ⇀
m (τm, µm) = f ′(τ0, λ

′−1µ0)

respectively, where n,m ∈ N and λ, λ′ ∈ R>0 is the dilatation of f, f ′ respectively. We
denote the Agol cycles by S,S ′ respectively. We say that S and S ′ are combinatorically
isomorphic if:

1. They have the same length: n = m

2. The Agol cycles differ by a shift s, a homeomorphism h and a scaling factor c ∈ R>0

h(τi+s, cµi+s) = (τ ′i , µ
′
i) or h(τi, cµi) = (τ ′i+s, µ

′
i+s)

for all i ∈ N0

Proposition 1.5.15 ([HIS16], Theorem 5.3; [KK23], Theorem 1.4). Let f : S → S be a
pseudo-Anosov map with dilatation λ and unstable measured lamination (Fu, µu), suited to
a measured train track (τ0, µ0). Then the splitting sequence of (τ0, µ0) up to combinatoric
isomorphism is a conjugacy invariant of f .

Suppose (τ0, µ0) ⇀
n (τn, µn) is an Agol cycle with respect to f . Then the Agol cycle up to

combinatoric isomorphism is a conjugacy invariant of f .
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Proof. The previous remark already explained how the splitting sequences of two conju-
gates f, g are combinatorically isomorphic, since they eventually differ only by a home-
omorphism and a scaling factor. They are eventually periodic with respect to f, g and
with period n. The Agol cycles are the finite subsequences constituting the period of the
spitting sequences. It is clear that they differ by a shift, a homeomorphism and a scaling
factor.

The next theorem will be useful in detecting Agol cycles. The above definition requires
that after an Agol cycle the weights change by the dilatation but this is actually not
necessary. Just showing that the train track changes by f already implies that the weights
change by the dilatation λ, thus forming an Agol cycle.

Theorem 1.5.16. Let f : S → S be a pseudo-Anosov map with dilatation λ and unstable
measured lamination (Fu, µu), suited to a measured train track (τ, µ).
Assume, the splitting sequence of (τ, µ) is periodic with respect to f and period m. If

(τ0, [µ0]p) ⇀
n f(τ0, [µ0]p) then (τ0, µ0) ⇀ ... ⇀ (τn, µn) = f(τ0, λ

−1µ0)

i.e. the maximal splits form an Agol cycle with respect to f .

Proof. If (τ0, µ0) ⇀ ... ⇀ (τn, µn) = f(τ0, c
−1µ0) for a c ∈ R+ is not an Agol cycle, then

there exists a m ∈ N, distinct from n, such that (τ0, µ0) ⇀ ... ⇀ (τm, µm) = f(τ0, λ
−1µ0) is

an Agol cycle. W.l.o.g. n < m. We then have

(f◦ ⇀n−m)(τ0, [µ0]p) = (⇀n−m ◦f)(τ0, [µ0]p) =⇀n−m (τm, [µm]p) = (τn, [µn]p) = f(τ0, [µ0]p)

meaning, by 1.5.8, that S is periodic with respect to the identity id and with period n−m.
By lemma 1.5.9, S also has period gcd(m,n−m) = gcd(m,n) and there is a map g such that
gn/gcd(m,n) = f and gm/gcd(m,n) = id. From the last equality follows that g is a periodic map
(in the sense of the Thurston-Nielsen classification). Therefore f also must be periodic,
which contradicts the assumption that f is pseudo-Anosov.
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Chapter 2

Literature Review

2.1 n-ary continued fractions

The heart of our study of n-ary continued fractions will be the 1992 paper by Bauer
[Bau92]. Bauer defines n-ary continued fractions, shows how they can be used to describe
the eigenvectors of certain Perron-Frobenius matrices and illustrates their connection to
train tracks.

The n-ary continued fractions themselves were first introduced first by Jacobi [JH68]
1868 for the case n = 2 and then further generalised by Perron [Per07] in 1907.

In particular, Perron’s the article has been very influential with 276 citations on Se-
mantic Scholar. Going through some of them, we find:

• Nikolaev, 2003 [Nik03]: This paper defines geodesics in hyperbolic space whose slope
is given by a multidimensional continued fraction

• Nikolaev, 2013 [Nik13]: A connection between operator algebras of pseudo-Anosov
maps and n-ary continued fractions is investigated.

• Battagliola, 2022 [BMS23]: This paper describes a way to visualize multidimensional
continued fractions

According to Bauer the first systematic approach to studying continued fractions by integer
matrices was been done by Hummel in 1940 [Hum40] but according to Semantic Scholar
this paper wasn’t very influential. Bauer’s paper itself also had only 2 citations, as well.

2.2 Train tracks

Train tracks have originally been introduced by Thurston [Thu79] to study the structure
of geodesic laminations. A relatively recent explanation of train tracks can be found in
Mosher’s PhD thesis. [Mos83] The first comprehensive exposition on train tracks was
written by Penner and Harer [PH91] which gives a detailed definition, describes splits,
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folds and shifts and again describes the connection to measured geodesic laminations.
With 508 citations, this book has become highly influential and an important reference
for much train track-related work. Some important examples (ordered by citation count)
include:

• Masur & Minsky, 1998 [MM98]: The authors use train tracks to describe the curve
complex of a surface, i.e. a structure that contains information on possible configu-
rations for sets of disjoint closed curves on a surface.

• Hamenstädt, 2005 [Ham06]: Hamenstädt uses train tracks to once-again describe the
curve complex of a surface.

• Birman & Beendle, 2004, [BB05]: The authors give a survey on braid theory. They
also mention train tracks as a possible solution to the conjugation problem for braids.

A somewhat more modern exposition is the preprint by Mosher [Mos03b]. The train track
is carefully introduced and their structure is analysed in-depth.

In our research, we are mainly interested in invariant train tracks, i.e. train tracks that
represent measured foliations. An algorithm for generating those train tracks is described
by Bestvina and Handel [BH95]. The algorithm itself is better explained by Boyland
[Boy94] and by [Iss12] but the paper has still been massively influential.

As for easily accessible literature on train tracks, there is the following. Each entry can
easily be read by undergraduate students:

• Blog post by Johnson [Joh14]: Johnson defines train tracks on the torus and explains
which curves are carried by the train tracks. This is then linked to Farey-intervals

• Article by Mosher [Mos03a]: Mosher explains Train tracks to a non-expert audience

• Master thesis by Issa [Iss12]: Issa explains measured foliations, laminations, train
tracks and train track splittings sequences in simple terms

• Blog Post by Margalit [Mar23]: Margalit gives a short, intuitive bird’s eye view on
the topic of mapping class groups of surfaces and explains where train tracks fit into
all of this.

• Braids and Dynamics by Thiffeault [Thi22]: The author gives a very accessible in-
troduction to braid theory. Train tracks and the Bestvina-Handel-algorithm are
introduced in the context of braids. The explanations are easy to follow.

2.3 Agol cycles

Splitting sequences have been studied for a long time. Penner and Harer [PH91] already
described the splitting operation, alongside the shift and th fold operation. However, to my
knowledge, Agol was the first to propose a natural splitting sequence, realized by splitting
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all branches with the maximal weights [Ago11]. Doing this, he was able to properly define
the Agol cycle as a conjugacy-invariant of pseudo-Anosov maps. Agol’s ideas have been
inspired by work by Hamenstädt [Ham09]. As it stands, there are only a handful of papers,
using his splitting sequence:

• Non-geometric veering triangulations [HIS16]: The three authors present an applica-
tion which can be used to calculate triangulations of mapping class tori. As part of
the functionality, the application can also output Agol cycle information.

• Agol cycles of pseudo-Anosov 3-braids [AK23]: This paper explicitly calculates Agol
cycles for 3-braids.

• Complete description of Agol cycles of pseudo-Anosov 3-braids [KK23]: This paper
defines train track on the torus and transfers them to the 3-punctured disc using a
hyperbolic involution. The presented train tracks are described by Farey intervals,
inspired by Mosher’s work [Mos03b]

On the topic of splitting sequence, which predate Agol’s paper, there are:

• On train-track splitting sequences [MMS12]: Has splitting sequence in the name

• Dilatations and Continued fraction [Bau92]: Uses folding sequences to get number-
theoretical porperties from train tracks.

Since we mentioned the paper by Agol, we also have to mention a paper by Agol and Tsang
[AT24]. This paper fixed an error which was introduced into [Ago11].
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Chapter 3

Theory

In his paper [Ago11]) Agol states that periodic splitting sequences are a topological ana-
logue of continued fractions, since they both seem to have similar properties. The aim of
this report is to examine this connection for a simple case, the once-punctured torus and
then for the twice-punctured torus. Due to time constraints, we won’t be able to gener-
alise the results to arbitrary surfaces §g,n. But simply stated, the generalisation works by
identifying measured train tracks with p-adic continued fractions as introduced in [Bau92].
For a train track in an Agol cycle, the p-adic continued fraction becomes periodic and we
obtain an explicit description of the train track weights, the Agol cycle and the dilatation
of the map.

3.1 The correspondence between train tracks and con-

tinued fractions on the once-punctured torus

On the once-punctured torus it is possible to identify a special set of measured train
tracks and continued fractions. In short, all train tracks on the once-punctured torus
are homeomorphic to a train track consisting of two curves of slope 0 and ∞ where the
crossing has been smoothed out into a large branch. We can give the branch a positive or
negative slope, giving us two topological types. The ratio between the 0-branch weight and
∞-branch weight gives a (possibly infinite) real numbered slope whose continued fraction
expansion determines the splitting sequence of the measured train track. This is mostly
well-known theory but we will give a new proof by interpreting the continued fraction as
a rectangle.

3.1.1 Pseudo-Anosov Homeomorphisms

Let S = S1,1 be the once-punctured torus. [KK23] showed the following. We take the
once-punctured torus to be a square with opposite edges identified and define two simple
closed closed curves c1, c2 on top.
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Figure 3.1: The maps fL and fR Figure 3.2: Train track
(τ, ( v1

v2 ))

We want to study the set of pseudo-Anosov homeomorphisms lying in the semigroup
generated by the left-handed Dehn twist fL := δ−1

c2
around c2 and the right-handed Dehn-

Twist fR := δc1 around c1.

Definition 3.1.1 (Set maps generated by fL, fR). The set of all maps generated by fL,
fR is denoted by F (fL, fR)

From Penner’s construction we get a necessary and sufficient condition for a map to be
pseudo-Anosov.

Corollary 3.1.2. For li, ri ∈ N0 a map f = f l1
L f

r1
R ...f ln

L f rn
R is pseudo-Anosov if and only

if each generator fL, fR occurs at least once in the product.

Up to conjugacy all maps f ∈ F (fL, fR) are described by products of the form f =
f l1
L f

r1
R ...f ln

L f rn
R where li, ri ∈ N and n ∈ N.

Note that we are using a different notation from the one introduced in [KK23], which
was f = f rn

R f ln
L ...f r1

R f l1
L . Our convention will later lead to nicer descriptions of the associ-

ated continued fractions.

3.1.2 Invariant train tracks

Definition 3.1.3. Due to the switch condition, the measure of the measured train track
in Figure 3.2 is determined by two positive numbers v1, v2 ∈ R>0 and denoted by (τ, µ) :=
(τ, ( v1

v2 )).
The train track is said to have the slope s := v2/v1. The induced projective train track is
denoted by (τ, [µ]p) := (τ, [s]p)

Lemma 3.1.4. Let f = f l1
L f

r1
R ...f ln

L f rn
R be a pseudo-Anosov map. By Penner’s construc-

tion, the invariant train track (τ, v) = (τ, ( v1
v2 )) is obtained by flattening the intersections of

the curves. The incidence matrices of the generators fR, fL, are R = ( 1 1
0 1 ) and L = ( 1 0

1 1 )
respectively. The weights are therefore given by the Perron-Frobenius eigenvector v of the
incidence matrix

M = Ll1Rr1 ...LlnRln
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We note that ( 1 0
1 1 )

a = ( 0 1
1 a )(

0 1
1 0 ) = D[a]( 0 1

1 0 ) and ( 1 1
0 1 )

a = ( 0 1
1 0 )(

0 1
1 a ) = ( 0 1

1 0 )D[a] and
transform M as follows:

M = Ll1Rr1 ...LlnRrn

= ( 1 0
1 1 )

l1( 1 1
0 1 )

r1 ...( 1 0
1 1 )

ln( 1 1
0 1 )

rn

= (D[l1]( 0 1
1 0 )) ((

0 1
1 0 )D[r1]) ... (D[ln]( 0 1

1 0 )) ((
0 1
1 0 )D[rn])

= D[l1]D[r1]...D[ln]D[rn]

This allows us to apply theorem 1.2.3.

Corollary 3.1.5. Let the assumptions be as in lemma 3.1.4. The slope s of the train track
can be described by a continued fraction:

s = [l1, r1, ..., ln, rn]

The dilatation λ of f can be described explicitly as

λ =

p∏
v=1

(T v−1[l1, r1, ..., ln, rn])

3.1.3 Rectangle models

We established in corollary 3.1.5 that for a given homeomorphism f = f l1
L f

r1
R ...f ln

L f rn
R , the

slope of the above train track (τ, v) can be described by a continued fraction [l1, r1, l2, r2, ...].
This continued fraction can be represented by a rectangle partitioned into squares in such
a way that l1, r1, l2, r2, ... square are inserted alternatively from the bottom and the right.
A maximal split on the train track changes the slope which induces an operation on the
rectangle model. Next, we will show that a maximal split corresponds directly to the
removal of a square as in figures 1.1 and 1.2.

Definition 3.1.6. For the train track (tau, v), the rectangle rect(v) is called the equivalent
rectangle to (τ, v).

3.1.4 Agol cycles

The rectangle visualisation can be used to easily prove a result about splitting sequences
of train tracks. All results are only valid for v1 ̸= v2 but this won’t be a problem later.

Proposition 3.1.7. A maximal split on the train track (τ, v) has the following effect:

(τ, ( v1
v2 ))


L
⇀

f−1
L7−→ (τ, ( v1

v2−v1 )) v1 < v2
R
⇀

f−1
R7−→ (τ, ( v1−v2

v2 )) v1 > v2
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Proof. We do the proof pictorially.

L
⇀

f−1
L7−→ v1 < v2

R
⇀

f−1
R7−→ v1 > v2

Theorem 3.1.8 ([KK23]). For i ∈ N let li, riN. The splitting sequence of the projective
train track (τ, [s]p) can be described as follows:

(f−1
L ◦ L

⇀)(τ, [[l1, r1, ...]]p) = (τ, [[l1 − 1, r1, ...]]p)

(f−1
R ◦ R

⇀)(τ, [[0, r1, l2, ...]]p) = (τ, [[0, r1 − 1, l2, ...]]p)

Consequently:

(f−1
L ◦ L

⇀)l1(τ, [[l1, r1, l2, ...]]p) = (τ, [0, r1, l2, ...])

(f−1
R ◦ R

⇀)r1(τ, [[0, r1, l2, ...]]p) = (τ, [[l2, r2...]]p)

Proof. It is known from proposition 3.1.7 how a train track behaves under a maximal split.
To show the above for a projective train track (τ, [s]p), we will choose a representative train
track (τ, v). The maximal split induces an operation on the equivalent rectangle rect(v).
We will then use the connection between rectangles and continued fractions to show the
theorem.

• If the slope of the measure is s = [l1, r1, ...], then v1 < v2. The maximal splitting
transforms the equivalent rectangle into rect( v1

v2−v1 ), i.e. removes a bottom square.
The new rectangle then admits the partition [l1 − 1, r1, l2, r2, ...].

• If the slope of the measure is s = [0, r1, ...], then v1 > v2. The maximal splitting
transforms the equivalent rectangle into rect( v1−v2

v2 ), i.e. removes a right square. The
new rectangle then admits the partition [0, r1 − 0, l2, r2, ...]. For the final step, we
remind ourselves that [0, 0, l2, r2, l3, r3, ...] = [l2, r2, l3, r3, ...].

Corollary 3.1.9. Let s = [l1, r1, l2, r2, ...] be a infinite continued fraction and li, ri ≥ 1.
The splitting sequence of the projective train track (τ, [s]p) can be described as follows:

(τ, [[l1, r1, l2, r2, ...]]p)
L
⇀

l1 R
⇀

r1 f
−l1
L7−→

f
−r1
R7−→ (τ, [[l2, r2, l3, r3, ...]]p)
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Theorem 3.1.10. Let f = f ln
L f rn

R ...f l1
L f

r1
R ∈ L be a pseudo-Anosov map. Let v ∈ R2

+ be

a vector with slope s = [l1, r1, ..., ln, rn]. Then the measured train track (τ, v) is part of the
Agol cycle of f . The Agol cycle beginning with (τ, v) is:

(τ, v)
L
⇀

l1 R
⇀

r1
...

L
⇀

ln R
⇀

rn
f(τ, λ−1v)

Furthermore, the length of the Agol cycle is
∑

li + ri

Proof. We apply corollary 3.1.9 n times to the train track (τ, v). Bacause the slope s of
v is periodic, the train track will become (τ, c−1v) (for a c ∈ R+). By theorem 1.5.16
this already proves that the above is an Agol cycle and that c ust have been equal to the
dilatation λ.

3.2 The correspondence on a familiy of homeomor-

phisms of the twice-punctured torus

3.2.1 Pseudo-Anosov Homeomorphisms

We apply the theory from above to the twice-punctured torus. As in the previous case,
and as seen in 3.3 we define simple closed curves, labelled 1, 2, 3 on the twice-punctured
torus.

Figure 3.3: Simple closed
curves c1, c2, c3 on the
twice-punctured torus

Figure 3.4: Measured
train track on the twice-
punctured torus



30 3. Theory

This time we will study maps composed of right-handed Dehn-twists around the curves
c1, c2 and left-handed Dehn-twists around the curve c3. We call those maps fR := δ−1

c1
, fR′ :=

δ−1
c2

and fL := δ−1
c3

respectively. As before, we define F (fR, fR′ , fL).

Definition 3.2.1 (Set maps generated by fL, fR, f
′
R). The set of all maps generated by

fR, fL, fR′ is denoted by (fR, fR′ , fL)

From Penner’s construction we again get a condition for when maps are pseudo-Anosov:

Corollary 3.2.2. For li, ri, r
′
i ∈ N0 a map f = f l1

L f
r1
R f

r′1
R′ ...f

ln
L f rn

R f
r′n
R′ is pseudo-Anosov if

and only if each generator fR, fR′ , fL occurs at least once in the product.

Since we are interested in maps up to conjugacy, we will study maps of the form

f = f l1
L f

r1
R f

r′1
R′ ...f

ln
L f rn

R f
r′n
R′ where li ≥ 1 and ri + r′i ≥ 1.

3.2.2 Invariant train tracks

Definition 3.2.3. Due to the switch condition, the measure of the measured train track
in Figure 3.4 is determined by three positive numbers v1, v2, v3 ∈ R>0 and denoted by

(τ, µ) := (τ,
(

v1
v2
v3

)
).

The train track is said to have the slope s :=
(

v2/v1
v3/v1

)
. The induced projective train track

is denoted by (τ, [µ]p) := (τ, [s]p)

Lemma 3.2.4. Let f = f l1
L f

r1
R f

r′1
R′ ...f

ln
L f rn

R f
r′n
R′ be a pseudo-Anosov map. By Penner’s con-

struction, the invariant train track (τ, v) = (τ,
(

v1
v2
v3

)
) is obtained by flattening the in-

tersections of the curves. The incidence matrices of the generators fR, fR′ , fL, are R =(
1 0 1
0 1 0
0 0 1

)
R′ =

(
1 0 0
0 1 1
0 0 1

)
and L =

(
1 0 0
0 1 0
1 1 1

)
respectively. The weights are therefore given by the

Perron-Frobenius eigenvector v of the incidence matrix

M = Ll1Rr1R′r′1 ...LlnRrnR′r′n

As previously, we transform the matrices R,R′, L into the D2[a]-matrices. This can be
done by applying elementary operations to our matrix. The detailed approach is explained
in [Bau92].

Lemma 3.2.5. The matrices R,R′, L can be written as follows:

• La = D2[( 0
a )]D2[(

a
0 )]D2[0] =

(
0 0 1
1 0 0
0 1 a

)(
0 0 1
1 0 a
0 1 0

)(
0 0 1
1 0 0
0 1 0

)
• Ra = D2[0]

2D2[(
a
0 )] =

(
0 0 1
1 0 0
0 1 0

)2( 0 0 1
1 0 a
0 1 0

)
• R′a = D2[0]

2D2[( 0
a )] =

(
0 0 1
1 0 0
0 1 0

)2( 0 0 1
1 0 0
0 1 a

)
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• LlRrR′r′ = D2[( 0
l )]D2[( l

0 )]D2[(
r
r′ )]

Proof. Calculation.

Again we apply theorem 1.2.3. From this we can describe the weights of the invariant
measured train track as a 2-adic continued fraction.

Corollary 3.2.6. Let the assumptions be as in Lemma 3.2.4. The slope s of the train
track can be described by a continued fraction:

s =
[(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...,

(
0
ln

)
,
(
ln
0

)
,
(
r′n
rn

)]
The dilatation λ of f can be described explicitly as

λ =
n∏

v=1

(
T v−1

[(
0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...,

(
0
ln

)
,
(
ln
0

)
,
(
r′n
rn

)])
|2

=
n∏

v=1

(
T v−1

[
l1, r1 + r′1, ..., ln, r

′
n + rn

])
Proof. The formulas for s and λ =

∏n
v=1

(
T v−1

[(
0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...,

(
0
ln

)
,
(
ln
0

)
,
(
r′n
rn

)])
|2

follow directly from 1.2.3.
We will prove the equality by analysing how the matrix LlRrRr′ act on the last component

of a vector v =
(

v1
v2
v3

)
:

LlRrRr′
(

v1
v2
v3

)
|3 = D2[( 0

l )]D2[( l
0 )]D2[(

r
r′ )]
(

v1
v2
v3

)
=

(
v1+rv3
v2+r′v3

v3+l(v1+rv3)+l(v2+r′v3)

)
|3

= v3 + l((v1 + v2) + (r + r′)v3) =
(

(v1+v2)+(r+r′)v3
v3+l(v1+v2+(r+r′)v3)

)
|2

= D1[l]D1[r + r′]( v1+v2
v3 )|2

If v is the Perron-Frobenius eigenvector M = Ll1Rr1R′r′1 ...LlnRrnR′r′n then it has slope s
by theorem 1.2.3 and eigenvalue λ. The previous calculation gives us:

λv3 = M
(

v1
v2
v3

)
|3 = D2[

(
0
l1

)
]D2[

(
l1
0

)
]D2[

( rn
r′n

)
]...D2[

(
0
ln

)
]D2[

(
ln
0

)
]D2[

( rn
r′n

)
]( v1+v2

v3 )|3

= D1[l1]D1[r1 + r′1]...D1[ln]D1[rn + r′n]
(

v1
v2
v3

)
|2

=
n∏

v=1

(
T v−1

[
l1, r1 + r′1, ..., ln, r

′
n + rn

])
by the same theorem.
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3.2.3 Rectangle Models

Just as in the once-punctured case, we want to introduce a rectangle model to visualise
the train track weights. Since the train track introduced on the twice puncture is defined
by three parameters it seems natural to use a cuboid with the side lengths representing
the train track weights. However, it turns out that for out family of homeomorphisms we
can use as split rectangle as well.

In the following we will define the split rectangle in a way analogous to a family of
2-ary continued fractions.

Definition 3.2.7 (Split rectangle). Let v1, v2, v3 ∈ R+. The split rectangle with side

lengths as in Figure 3.5 is denoted rect
(

v1
v2
v3

)
Definition 3.2.8 (Square partition). Let rect

(
v1
v2
v3

)
be a rectangle. We say, it admits a

square partition [q1, p1, p
′
1, ...] if it can be partitioned into a finite amount of squares as seen

in the picture 3.6.

Figure 3.5: Split rectangle Figure 3.6: Rectangle admitting a partition

Proposition 3.2.9. Let v =
(

v1
v2
v3

)
∈ R3

+ with slope s =
(

v2/v1
v3/v1

)
. rect+(v) admits the square

partition [l1, r1, r
′
1, l2, r2, r

′
2, ...] if and only if s has the 2-ary continued fraction expansion

s =
[(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
, ...
]

Proof. The infinite continued fraction is defined as the limit of a series of matrix products.

[w]p = lim
t→∞

[
D2[
(

0
l1

)
]D2[

(
l1
0

)
]D2[

( r1
r′1

)
]...D2[

(
0
ln

)
]D2[

(
ln
0

)
]D2[

( rn
r′n

)
]

(
0
...
0
1

)]
p
=
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We note that removing the first block of matrices D2[
(

0
l1

)
]D2[

(
l1
0

)
]D2[

( r1
r′1

)
] has the follow-

ing effect on a vector

v′ := D2[
( r1
r′1

)
]−1D2[

(
l1
0

)
]−1D2[

(
0
l1

)
]−1
(

v1
v2
v3

)
=

(
v1−r1(v3−l1(v1+v2))
v2−r′1(v3−l1(v1+v2))

(v3−l1(v1+v2))

)
Similarly, removing the highlighted squares from the rectangle has the same effect, giving
us the rectangle

rect

(
v1−r1(v3−l1(v1+v2))
v2−r′1(v3−l1(v1+v2))

(v3−l1(v1+v2))

)
= rect

(
D2[
( r1
r′1

)
]−1D2[

(
l1
0

)
]−1D2[

(
0
l1

)
]−1
(

v1
v2
v3

))
= rect(v′)

We now proove the equivalence. By proposition 1.2.2 s has the continued fraction expansion[(
0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
,
(

0
l3

)
,
(
l3
0

)
,
( r3
r′3

)
, ...
]
if and only if

lim
n→∞

(
D2[
( rn
r′n

)
]−1D2[

(
ln
0

)
]−1D2[

(
0
ln

)
]−1
)
...
(
D2[
( r1
r′1

)
]−1D2[

(
l1
0

)
]−1D2[

(
0
l1

)
]−1
)
( 1
s ) = 0

which, due to the previous analogy, holds if and only if rect(v) admits the square partition
[l1, r1, r

′
1, l2, r2, r

′
2, ...].

Lemma 3.2.10. For v =
(

v1
v2
v3

)
, let rect(v) be a rectangle which admits a square partition

(q1, p1, p
′
1, q2, p2, p

′
2, ...), where qi ≥ 1 for all i ∈ N. Then we have

v1 < v2 ⇐⇒ (p1, p2, ...) ≺ (p′1, p
′
2, ...)

v1 = v2 ⇐⇒ (p1, p2, ...) = (p′1, p
′
2, ...)

v1 > v2 ⇐⇒ (p1, p2, ...) ≻ (p′1, p
′
2, ...)

where ≺,=,≻ compare the sequences lexicographically.

Proof. We draw the partitioned rectangle, similarly to figure 3.6. Let wi, hi denote the
widths and heights of the rectangles as in the picture. This lets us describe v1, v2 with the
following sums:

v1 =
∞∑
i=1

pihi+1 and v2 =
∞∑
i=1

p′ihi+1

The fact
∑∞

j=i pjhj+1,
∑∞

j=i p
′
jhj+1 ≤ wi < hi also clearly follows from the picture. The

first inequality is obviously true and since qi > 0 all highlighted rectangles in fig 3.6 are
higher than wide, i.e. wi < hi.
If (p1, p2, ...) ≺ (p′1, p

′
2, ...), then there is a smallest i such that pi < p′i, with all previous

coefficients being equal. We then have

pihi+1 < p′ihi+1 ⇐⇒ pihi+1+
∞∑

j=i+1

pjhj+1 < p′ihi+1+
∞∑

j=i+1

p′jhj+1 ⇐⇒
∞∑
j=1

pjhj+1 <
∞∑
j=1

p′jhj+1
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We have just identified continued fraction expansions with square partitions of rect-
angles. Next we will identify rectangles with train tracks and later use the fact that a
maximal split corresponds to the removal of a square from a rectangle.

Definition 3.2.11 (Equivalent rectangle). Let v ∈ Rn
+. For the train track (τ, v), the split

rectangle rect(v) is called the equivalent rectangle to (τ, v).

3.2.4 Agol cycle

The modified rectangle model will be used to give an intuitive and convincing proof for
the Agol cycle of a map f . But first we calculate how the train track changes under a
maximal split. We will notice some differences, depending on whether v1 = v2 or v1 ̸= v2.
Later these differences in weight will correspond to a difference in a ri, r

′
i in a map f =

f l1
L f

r1
R f

r′1
R′ ...f

ln
L f rn

R f
r′n
R′ . Maps for which ri = r′i for all i ∈ {1, ..., n} will be called symmetric.

If there is an i s.t. ri ̸= r′i then f is called asymmetric. Generally speaking, in symmetric
maps maximal splits at multiple branches occure more often, making Agol cycles shorter
than in the asymmetric case.

Proposition 3.2.12. A maximal split on the train track (τ, v) has the following effect:
For the symmetric case, i.e. v1 = v2, we have:

(τ,
(

v1
v2
v3

)
)


L
⇀

2 f−1
L7−→ (τ,

(
v1
v2

v3−v1−v2

)
) v1 + v2 < v3

R
⇀

f−1
R f ′−1

R7−→ (τ,
(

v1−v3
v2−v3
v3

)
) v1, v2 > v3, v1 = v2

For the asymmetric case v1 ̸= v2, we have:

(τ,
(

v1
v2
v3

)
)


L
⇀

3 f−1
L7−→ (τ,

(
v1
v2

v3−v1−v2

)
) v1 + v2 < v3

R
⇀

f−1
R7−→ (τ,

(
v1−v3
v2
v3

)
) v1, v2 > v3, v1 > v2

R
⇀

f−1
R7−→ (τ,

(
v1

v2−v3
v3

)
) v1, v2 > v3, v1 < v2

Proof. We do the proof pictorially. For the symmetric case, i.e. v1 = v2, we have:

L
⇀

L
⇀

f−1
L7−→ v1 + v2 < v3

R
⇀

f−1
R f ′−1

R7−→ v1, v2 > v3, v1 = v2
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For the asymmetric case v1 ̸= v2 (w.l.o.g. v1 < v2), we have:

L
⇀

L
⇀

L
⇀

f−1
L7−→ v1 + v2 < v3

R
⇀

f−1
R7−→ v1, v2 > v3, v1 > v2

R
⇀

f−1
R7−→ v1, v2 > v3, v1 < v2

Theorem 3.2.13. Let s = [
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
, ...] be a 2-ary infinite contin-

ued fraction with the implied pattern and li ≥ 1, ri + r′i ≥ 1 and possibly l1 = 0. The
splitting sequence of the projective train track (τ, [s]p) can be described as follows:

• In the symmetric case (ri = r′i)

(f−1
L ◦ L

⇀
2

)(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[

(
0

l1−1

)
,
(
l1−1
0

)
,
( r1
r′1

)
, , ...]]p)

(f−1
R f−1

R′ ◦ L
⇀)(τ, [[0, 0,

( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[0, 0,

(
r1−1
r′1−1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p)

Consequently:

(f−1
L ◦ L

⇀
2

)l1(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[0, 0,

( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p)

(f−1
R f−1

R′ ◦ R
⇀)r1(τ, [[0, 0,

( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[

(
0
l2

)
,
(
l2
0

)
, ...]]p)

• In the asymmetric case (ri ̸= r′i for one ri)

(f−1
L ◦ L

⇀
3

)(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[

(
0

l1−1

)
,
(
l1−1
0

)
,
( r1
r′1

)
, , ...]]p)

(f−1
R ◦ R

⇀)(τ, [[0, 0,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[0, 0,

(
r1−1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p)

(f−1
R′ ◦ R

⇀)(τ, [[0, 0,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[0, 0,

( r1
r′1−1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p)
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Consequently:

(f−1
L ◦ L

⇀
3

)l1(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[0, 0,

( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p)

(f−r1
R f

−r′1
R′ ◦ R

⇀
r1+r′1

)(τ, [[0, 0,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) = (τ, [[

(
0
l2

)
,
(
l2
0

)
, ...]]p)

Proof. It is known from proposition 3.2.12 how a train track behaves under a maximal
split. To show the above for a projective train track (τ, [s]p), we choose a representative
train track (τ, v). The maximal split induces an operation on the equivalent rectangle
rect(v). We will then use the connection between split rectangles and continued fractions
to show the theorem.

• Symmetric train tracks (v1 = v2): The train track can change as follows

(τ,
(

v1
v2
v3

)
)


L
⇀

2 f−1
L7−→ (τ,

(
v1
v2

v3−v1−v2

)
) v1 + v2 < v3

R
⇀

f−1
R f ′−1

R7−→ (τ,
(

v1−v3
v2−v3
v3

)
) v1, v2 > v3, v1 = v2

A representative of the train track (τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) fulfills the

conditions of the first case. The maximal splitting removes the bottom square
of the equivalent rectangle. The new rectangle then admits the partition [l1 −
1, r1, r

′
1, l2, r2, r

′
2, ...]. For the final step, we use the fact, that the 2-ary continued

fraction has the property [0, 0, 0, y(4), y(5), y(6), ...] = [y(4), y(5), y(6), ...].
A representative of the train track (τ, [[0, 0,

( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) fulfills the condi-

tions of the second case. The maximal splitting removes the left and right square of
the equivalent rectangle. The new rectangle then admits the partition [0, r1 − 1, r′1 −
1, l2, r2, r

′
2, ...].

• Asymmetric train tracks (v1 ̸= v2): The train track can change as follows

(τ,
(

v1
v2
v3

)
)


L
⇀

3 f−1
L7−→ (τ,

(
v1
v2

v3−v1−v2

)
) v1 + v2 < v3

R
⇀

f−1
R7−→ (τ,

(
v1−v3
v2
v3

)
) v1, v2 > v3, v1 > v2

R
⇀

f−1
R7−→ (τ,

(
v1

v2−v3
v3

)
) v1, v2 > v3, v1 < v2

A representative of the train track (τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p) fulfills the

conditions of the first case. The maximal splitting removes the bottom square
of the equivalent rectangle. The new rectangle then admits the partition [l1 −
1, r1, r

′
1, l2, r2, r

′
2, ...].

If v1 > v2 (resp. v1 < v2) then a representative of the train track (τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
, ...]]p)

fulfills the conditions of the second (resp. third) case. The maximal splitting removes
the left (resp. right) square of the equivalent rectangle. The new rectangle then ad-
mits the partition [0, r1 − 1, r1, l2, r2, r

′
2, ...] (resp. [0, r1 − 1, r′1, l2, r2, r

′
2, ...]).
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Corollary 3.2.14. Let s = [
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
,
(

0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
, ...] be a 2-ary infinite contin-

ued fraction with the implied pattern and li ≥ 1, ri + r′i ≥ 1. The splitting sequence of the
projective train track (τ, [s]p) can be described as follows:

• In the symmetric case (ri = r′i)

(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...]]p)

L
⇀

2l1 R
⇀

r1 f
−l1
L7−→

f
−r1
R f

−r′1
R′7−→ (τ, [[

(
0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
, , ...]]p)

• In the asymmetric case (ri ̸= r′i for one ri)

(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...]]p)

L
⇀

3l1 R
⇀

r1+r′1 f
−l1
L7−→

f
−r1
R f

−r′1
R′7−→ (τ, [[

(
0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
, , ...]]p)

Proof. The corollary directly follows from application of the theorem above:

In the symmetric case (ri = r′i)

(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...]]p)

L
⇀

2l1 f
−l1
L7−→ (τ, [[( 0

0 ), (
0
0 ),
( r2
r′2

)
, , ...]]p)

R
⇀

r1 f
−r1
R f

−r′1
R′7−→ (τ, [[

(
0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
, ...]]p)

In the asymmetric case (ri ̸= r′i for one ri)

(τ, [[
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...]]p)

L
⇀

3l1 f
−l1
L7−→ (τ, [[( 0

0 ), (
0
0 ),
( r2
r′2

)
, , ...]]p)

R
⇀

r1+r′1 f
−r1
R f

−r′1
R′7−→ (τ, [[

(
0
l2

)
,
(
l2
0

)
,
( r2
r′2

)
, ...]]p)

Theorem 3.2.15. Let f = f l1
L f

r1
R f

r′1
R′ ...f

ln
L f rn

R f
r′n
R′ ∈ L be a pseudo-Anosov map. Let v ∈ R3

+

be a vector with slope s = [
(

0
l1

)
,
(
l1
0

)
,
( r1
r′1

)
, ...,

(
0
ln

)
,
(
ln
0

)
,
( rn
r′n

)
]. Then the measured train

track (τ, v) is part of the Agol cycle of f .

• If f is symmetric, i.e. ri = ri for all i ∈ {1, ..., n}, then the Agol cycle beginning with
(τ, v) is:

(τ, v)
L
⇀

2l1 R
⇀

r1
...

L
⇀

2ln R
⇀

rn
f(τ, λ−1v)

Furthermore, the length of the Agol cycle is
∑n

i=1 2qi + pi.

• If f is assymmetric, i.e. ri ̸= ri for one i ∈ {1, ..., n}, then the Agol cycle beginning
with (τ, v) is:

(τ, v)
L
⇀

3l1 R
⇀

r1+r′1
...

L
⇀

3ln R
⇀

rn+r′n
f(τ, λ−1v)

Furthermore, the length of the Agol cycle is
∑n

i=1 3qi + pi + p′i
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Proof. We apply corollary 3.2.14 n times to the train track (τ, v). Since the slope s of v
is periodic, the train track will eventually become (τ, c−1v) (for a c ∈ R+). By ?? this
already proves that the above is an Agol cycle and that c must have been equal to the
dilatation λ.

Theorem 3.2.16. Let f = f l1
L f

r1
R f

r′1
R′ ...f

ln
L f rn

R f
r′n
R′ ∈ L be a pseudo-Anosov map. Then

the total splitting number of the Agol cycle with respect to f does not depend on symme-
try/asymmetry. It is calculated by:

N(f) =
n∑

i=1

4qi + pi + p′i

Proof. The proof will not be given here. The result can easily be verified in analogy to the
Agol cycle length.



Chapter 4

Discussion

Many things have been left out. For one thing, the background could be much more
extensive, to explain the topic to a graduate student just starting out. The obvious gaps
are the lack of explanations for geodesic laminations, mapping class groups, the Thurston-
Nielsen classification, pseudo-Anosov maps and probably some more.

The literature review is not exhaustive. I spent a large part of the year trying to figure
out what exactly to research and therefore didn’t have much time to survey the literature.
For many mentioned of the articles mentioned I was only able to read the introduction and
not much more. I would have liked to have made a mind map, showing how the different
papers influenced each other, giving a useful overview of the subject. This would be useful,
especially for me. The mind map might also highlight a suspicion of mine, namely that
the combinatorial study of train tracks has split into two largely independent branches,
one pioneered by Series et al. and the other by Agol et al. Integrating these two branches
might yield fruitful results.

On the theory sinde, there were a lot of things I wanted to say but couldn’t due to time
constraints. I would have liked to explain the train tracks on the 3-punctured disc and the
train tracks on the 4-punctured disc. It turns out that they are related to the train tracks
of the once and twice-punctured torus by a (branched) double cover (see [KK23] for an
example). There should be a construction to create the Agol cycle of any punctured disc
from the Agol cycle of its double cover. At least for maps of Penner’s construction (which
descend to simple maps on the punctured disc)

Furthermore, the obvious connection between train tracks and laminations has not been
well-discussed, even though this connection is very well known in the literature, having
already been described by Penner in 1991 [PH91]. Nevertheless, there is an important
connection to be made. If we have a train track with weights given by an n-ary continued
fraction, then this train track carries a geodesic lamination with a specific slope. I suspect,
this slope is given by the same continued fraction. The paper by Nikolaev [Nik03] might
be extremely useful to further pursue this topic. In the case of the once-punctured torus,
there is some theory on the cutting sequence of a geodesic, i.e. how a geodesic cuts through
the tessellation, induced by universial cover of a surface. Work by Series [Ser85] suggests
that this cutting sequence determines the left/right splits of a splitting sequence. But this
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is only a hunch and still very speculative.
Besides that, we didn’t even finish the obvious next task. We have described the

train tracks for a family of pseudo-Anosov homeomorphisms on the once-punctured and
twice-punctured torus by 1 and 2-ary fractions. I suspect that it should be relatively easy
to extend the construction to any map given by Penner’s construction. However, when
analysing thsse maps, it might be wise not to use the continued fractions defined by Dn[y]
but use the transpose Dn[y]

t instead. The difference is subtle but it might better highlight
the number-theoretical importance of train track splitting sequences. Intuitively, Dn[y]
describes to which weights a weight wi should be added, whereas Dn[y]

t describes the
opposite perspective. Which weights should be added to wi. I think this better reflects the
nature of train track splitting sequences.

Finally, I wanted to generalise a theorem in Bauer. In short, [Bau92] contains a theorem
which only works if there is a ”folding sequence” connecting τ and f(τ). Bauer could not
show this for any pseudo-Anosov map. But since an Agol cycle would give us such a
”folding sequence”, extending the the proof should not be too hard, there was just not
enough time to write it out.
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